Закон гука для напряжения

Почему деформацию должна изучать механика

Говоря о сжатиях или растяжениях, следует задать себе вопрос: какой раздел физики должен изучать этот процесс? При сильных искажениях может выделяться тепло, быть может, этими процессами должна заниматься термодинамика? Иногда при сжатии жидкостей, она начинает кипеть, а при сжатии газов образуются жидкости? Так что же, деформацию должна познавать гидродинамика? Или молекулярно-кинетическая теория?

Всё зависит от силы деформации, от ее степени. Если деформируемая среда (материал, который сжимают или растягивают) позволяет, а сжатие невелико, есть смысл рассматривать этот процесс как движение одних точек тела относительно других.

А раз вопрос касается сугубо движения, значит, заниматься этим будет механика.

Определение и формула закона Гука

Формулировка этого закона выглядит следующим образом: сила упругости, которая появляется в момент деформации тела, пропорциональна удлинению тела и направлена противоположно движению частиц этого тела относительно других частиц при деформации.

Рис. 1. Формула закона Гука

где Fупр – соответственно сила упругости, x – удлинение тела (расстояние, на которое изменяется исходная длина тела), а k – коэффициент пропорциональности, называемый жесткостью тела. Сила измеряется в Ньютонах, а удлинение тела – в метрах.

Для раскрытия физического смысла жесткости, нужно в формулу для закона Гука подставить единицу, в которой измеряется удлинение – 1 м, заранее получив выражение для k.

Рис. 2. Формула жесткости тела

Эта формула показывает, что жесткость тела численно равна силе упругости, которая возникает в теле (пружине), когда оно деформируется на 1 м. Известно, что жесткость пружины зависит от ее формы, размера и материала, из которого произведено данное тело.

Закон Гука и условие его выполнения

 В 1660 году известный английский ученый Роберт Гук открыл явление, при помощи которого можно механически описать процесс деформаций.

ЧИТАЙТЕ ТАКЖЕ:  Какой закон нужен детям

Есть такие среды (например, газы, жидкости, особо вязкие жидкости, близкие к твердым состояниям или, наоборот, очень текучие жидкости) для которых описать процесс механически никак не получится. И наоборот, существуют такие среды, в которых при достаточно больших силах механика перестает срабатывать.

Важно! На вопрос: При каких условиях выполняется закон Гука?, можно дать определенный ответ: При малых деформациях.

Закон Гука, определение: деформация, которая возникает в теле, прямо пропорциональна силе, которая вызывает эту деформацию.

Назад

Естественно, это определение подразумевает, что:

  • сжатия или растяжения невелики,
  • предмет упругий,
  • он состоит из материала, при котором в результате сжатия или растяжения нет нелинейных процессов.

Особенности сил упругости

Как мы уже выяснили, сила упругости возникает при деформации, и направлена она на восстановление первоначальных форм и размеров строго перпендикулярно к деформируемой поверхности. У сил упругости также есть ряд особенностей.

  • они возникают во время деформации;
  • они появляются у двух деформируемых тел одновременно;
  • они находятся перпендикулярно поверхности, по отношению к которой тело деформируется.
  • они противоположны по направлению смещению частиц тела.

Почему деформацию должна изучать механика

где   изменение длины тела вследствие сжатия или растяжения, F сила, приложенная к телу и вызывающая деформацию (сила упругости), k коэффициент упругости, измеряется в Н/м.

Следует помнить, что закон Гука справедлив только для малых растяжений.

,  но опять-таки, все зависит от того куда будет направлена ось, относительно которой вы проводите измерение .

В чем кардинальная разница между сжатием и растяжением? Ни в чем, если оно незначительно.

Обратим внимание на график. Как видим, при небольших растяжениях (первая четверть координат) долгое время сила с координатой имеет линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и закон перестает выполняться. На практике это отражается таким сильным растяжением, что пружина перестает возвращаться в исходное положение, теряет свойства. При еще большем растяжении происходит излом, и разрушается структура материала.

ЧИТАЙТЕ ТАКЖЕ:  Материалы Международного семинара "Оценка законов и эффективности их принятия" (16-17 декабря 2002 г.) Консультант Плюс

Закон гука для напряжения

При небольших сжатиях (третья четверть координат) долгое время сила с координатой имеет тоже линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и всё вновь перестает выполняться. На практике это отражается таким сильным сжатием, что начинает выделяться тепло и пружина теряет свойства. При еще большем сжатии происходит слипание витков пружины и она начинает деформироваться по вертикали, а затем и вовсе плавиться.

К пружине подсоединен динамометр. Ее растянули, приложив силу в 20 Ньютон, из-за чего она стала иметь длину 1 метр. Затем ее отпустили, подождали пока прекратятся колебания, и она вернулась к своему нормальному состоянию. В нормальном состоянии ее длина составляла 87, 5 сантиметров. Давайте попробуем узнать, из какого материала сделана пружина.

Посмотрев таблицу, можем обнаружить, что этот показатель соответствует пружинной стали.

Применение закона на практике

Закон Гука применяется как в технических и высокотехнологичных устройствах, так и в самой природе. Например, силы упругости встречаются в часовых механизмах, в амортизаторах на транспорте, в канатах, резинках и даже в человеческих костях. Принцип закона Гука лежит в основе динамометра – прибора, с помощью которого измеряют силу.

Рис. 3. Динамометр

Что мы узнали?

Статья подробно знакомит учащихся с материалом о том, как формулируется обобщенный закон Гука, который изучают в 7 классе, и его основной величине – силе упругости.

Неприятности с коэффициентом упругости

Закон гука для напряжения

 Физика, как известно, наука очень точная, более того, она настолько точна, что создала целые прикладные науки, измеряющие погрешности. Будучи эталоном непоколебимой точности, она не может себе позволить быть нескладной.

Практика показывает, что рассмотренная нами линейная зависимость, является ничем иным как законом Гука для тонкого и растяжимого стержня. Лишь в качестве исключения можно применять его для пружин, но даже это является нежелательным.

Оказывается, что коэффициент k переменная величина, которая зависит не только от того из какого материала тело, но и от диаметра и его линейных размеров.

нельзя назвать ничем иным как зависимостью между тремя переменными.

ЧИТАЙТЕ ТАКЖЕ:  Закон обратных квадратов в фотографии Советник

Модуль Юнга

 Давайте попробуем разобраться с коэффициентом упругости. Этот параметр, как мы выяснили, зависит от трех величин:

  • материала (что нас вполне устраивает),
  • длины L (что указывает на его зависимость от ),
  • площади S.

Важно! Таким образом, если нам удастся каким-то образом отделить из коэффициента длину L и площадь S, то мы получим коэффициент, полностью зависящий от материала.

Что нам известно:

  • чем больше площадь сечения тела, тем больше коэффициент k, причем зависимость линейная,
  • чем больше длина тела, тем меньше коэффициент k, причем зависимость обратно пропорциональная.

Вперед

причем Е новый коэффициент, который теперь точно зависит исключительно от типа материала.

Следует признать, что эта величина более содержательна, чем  , поскольку она отражает не просто на сколько пружина сжалась или растянулась, а во сколько раз это произошло.

Важно! Нормальное напряжение представляет собой долю деформирующей силы на каждый элемент площади сечения.

Измеряется нормальное сечение в Н/м2.

Таким образом, мы получили формулу, которая отражает связь между нормальным напряжением и относительным удлинением.

Видеоурок по физике Силы упругости. Закон Гука

Закон Гука и упругие деформации

Понравилась статья? Поделиться с друзьями:
Adblock
detector